X - Class 10 Optional Mathematics SEE question paper 2081 (with solution)

SEE 2081 (2025)
Optional Mathematics (ऐच्छिक प्रथम गणित)

समय: ३ घण्टा  पूर्णाङ्क: ७५

दिइएका निर्देशनका आधारमा आफ्नै शैलीमा सिर्जनात्मक उत्तर दिनुहोस्।


समूह 'क' (Group 'A') [10×1=10]

1. Write the definition of quadratic function.

2. Write the formula to find the sum of a geometric series having n terms, where common ratio 

r is more than 1:

Sn=a(rn1)r1


3. Write the sentence for this limit:

limxaf(x)


4. If A1 is the inverse of matrix A, then:

AA1=I


5. Write the angle formula between two lines having slopes m1 and m2:

tanθ=m1m21+m1m2

6. In which condition does a plane intersect a cone to form a parabola?

When the plane is parallel to the slant/side of the cone.


7. Express cos2A in terms of cosA:

cos2A=2cos2A1


8. Express sinCsinD in terms of product:

sinCsinD=2cos(C+D2)sin(CD2)


9. If vectors a and b are perpendicular, then:

ab=0

10. If point
 P is the inversion of point P in a circle centered at O with radius r, then:

OPOP=r2



समूह 'ख' (Group 'B') [8×2=16]

11. If one factor of the polynomial
f(x)=x35x2+(k+1)x+is, find the value ofk.


12. Draw the graph of the inequality:
2x+y3

13. Use Crammer's Rule to find the values of
 Dx and Dy from the system:
{2xy=5x2y=1

14. If two lines given by equations

cx+dy+e=0 and fx+gy+h=0 are parallel, prove that:
cgdf=0

15. Prove:
sinθ+sinθ2cosθ+cosθ2+1=tanθ2

16. Solve:

3tanA1=0(0A180)

17. If
 |a=4, |b=6, and
ab=12, find the angle between a and b.

18. In a continuous series, the third quartile is two times the first quartile. If the sum of the first and third quartiles is 90, find the quartile deviation.

समूह 'ग' (Group 'C') [11×3=33]

19. If (x)=4x17, (x)=2x+85, and (g(x))=f1(x), find the value of x.

21. Solve graphically:

x2+x2=0


21. 
If
f(x)={2x+4for x<34x2for x3
Is the function continuous at x=3? Justify your answer.

22. Solve by matrix method:

x=23y,4x3y=1


23. Find the equation of a circle whose center is (2, 3) and which passes through the center of the circle

x2+y210x+4y+13=0


24. P
rove:

cot(A2+π4)tan(A2π4)=2cosA1+sinA


25. If
 A+B+C=π, then prove:

cosA+cosBcosC=4cosA2cosB2sinC21


26. The angles of depression and elevation of the pinnacle of a temple 10 m high are
 60 and 30, respectively. Find the height of the tower.

27. If the matrix

[a2b2]

transforms a unit square into the parallelogram with vertices (0, 4), (1, 3), (c, 2), (2, d), find the values of a,b,c,d.


28. Find the mean deviation from median of the following data:

Marks obtained0–1010–2020–3030–4040–50
No. of students38564

29. Find the standard deviation from the following data:

Age (years)0–44–88–1212–1616–2020–24
No. of students78101296

समूह 'घ' (Group 'D') [4×4=16]

30. The sum of three numbers in an arithmetic series is 18.
If the geometric mean between the first and third numbers is 42, find the numbers.

31. Separate the pair of lines from the equation:

x22xycscθ+y2=0

Also, find the angle between them.


32. Prove using vector method that:

If PQ is the diameter of a semicircle with center O, and M is any point on the circumference, then:

PMQ=90

33. A triangle has vertices P(4, 3), Q(-2, 0), and R(5, 2).
It is first translated by the vector

T=(22)

and then rotated 90 clockwise (negative direction) about the origin.
Find the coordinates of the new image and plot both triangles on the graph.




#buttons=(Ok, Go it!) #days=(60)

Our website uses cookies to enhance your experience. Learn More
Ok, Go it!